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OPTIMAL PRICING, USE AND EXPLORATION OF UNCERTAIN NATURAL RESOURCE STOCKS

by

Kenneth J. Arrow and Sheldon Changlj

Units of natural resources, to be called "mines",
are assumed distributed over the unexplored territory i
according to a Poisson process in space. At any {
moment, total reserves, R, and unexplored land, X, are
given. Society can determine the rate of consumption,
c, and the rate of exploration (space per unit time), x.
Reserves, R, are drawn down by consumption and increased
by discoveries made during exploration; X is decreased
by exploration. At any moment, the payoff to society is
a concave function of c less a linear function of x.
Payoffs in the future are discounted back to the present
at a constant rate.

The optimal policy is characterized by a decreasing
function, (X). When R > R,(X), there is no exploration.
The shadow =~ prices of reserves and of unexplored land
both rise at the rate of interest, and consumption is such
that its marginal utility equals the shadow price of
reserves. When R decreases to (X), exploration occurs
at an infinite rate; R is increased by random discoveries
and X is decreased by the area explored, so that R and X
are transformed into R' and X', respectively, with
R' > (X'). For large values of X, (X) is almost zero,
and the shadow prices move in random cycles but show only
a slight upward trend, thereby casting some light on the
failure of mineral prices to rise at the market rate of
interest.

The classic Hotelling [1931] model of exploitation of exhaustible
resources assumes in its simplest form that the stock of the resource
is known from the beginning. If there are no extraction costs, then the
shadow prices associated with an optimal extraction policy rise at the
rate of the market rate of interest. The only variable that has to be

determined is the initial price, which then determines all future prices;

i/

="A preliminary version of this paper was originally presented by Arrow at
the Conference on Natural Resource Pricing, Trail Lake, Wyoming, 15-17
August 1977 and later at the Third Kingston Conference on Differential
Games and Control Theory, 5-8 June, 1978. Chang was present at the latter

conference and subsequently made the main contributions to completing the
aalysis.




this depends upon the interaction of demand (or utility) considerations

with the initial stock. Clearly in a competitive world, prices would have
to rise at the rate of interest to keep resource-holders indifferent
between extracting the resource now and later.
If there are extraction costs, then the market price is the sum
of the marginal extraction cost and the rent on the scarce stock. The
latter still obeys the rule of the preceding paragraph, so that the rent
will rise at the rate of interest.
The experience of many miner#ls, most strikingly oil from 1950 to
1970, is that the theoretically-derived iﬁcrease i; prices is not observed.
One might take a very long-run view of the world and say that the post-1970
increases are a sort of making up for lost time. Perhaps the Hotelling
theory looks better when 1977 is compared with 1950. Still such an evasion
gives the theory little value.
No doubt many explanations for the discrepancy are possible. But
certainly one rather obvious one is that the stock of the resource is
very far from known. Hence, new discoveries yielding upward revision
of estimated reserves change the basis of calculation for the Hotelling
rents. The predicted rise at the rate of interest is offset by repeated
downward revision of the initial price in response to changing supply
estimates.
But 1: the stocks are in fact uncertain, as evidence by repeated
changes in estimates, then that uncertainty should be reflected in the
=

initial planning. It is the aim of this paper to begin such an analysis. tion

og

3/,
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= The analysis of extraction and consumption policy under conditions of
uncertainty about the amount of reserves has been studied a number of
times in the literature. For a survey, see Crabbe [1977], and for a
recent example, see Loury [1976].
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It is important, in my judgment, to distinguish between the process

of learning about reserves and the consumption of them.éj The first
constitutes exploratory activity. It is clearly not the case th;t the
only form of information about resource reserves comes from pumping for
consumption. :

The analysis in this paper is largely heuristic, and some points

remain to be clarified, as will be seen.

3 The Model of Uncertainty About Resources

Resources are assumed to be distributed randomly throughout the
relevant area; they can discovered by costly exploration.

In particular, it will be assuﬁed that there is no spatial correla-
tion of resource distribution. In probability terms, the resource quan-
tities in two overlapping areas are assumed to be independent random
' variables.é/ It turns that this assumption, together with the natural
condition that resource pools are non-negative, severely restricts the

range of possible distribution to be used. In particular, the resources

~3—/P:tm'lyck [1978] has distinguished between exploration and extraction

but not in the context of uncertainty. Gilbert [1978] has introduced
exploration as a means of gaining information, as in the present
paper, but his probability assumptions are different. Like Loury
[1976], he assumes a given probability distribution for the total
stock; extraction and exploration change the distribution only

in the sense that the posterior distribution is conditioned on the
statement that the total is at least as great as the amount extracted
and explored for. This assumption is not grounded on the chance
distribution of resources over the surface of the Earth.

The model of Deshmukh and Pliska [1978], developed independently
of the present paper, has fundamentally the same probability assumptions
(strictly speaking, theirs are more general). However, they assume
that there is no limit on unexplored land and hence in the long run
the resource is not exhaustible.

4/ some support for this view can be found in the model of Menard
and Sherman ([1975], p. 337).




must be located in discrete spots; randomly distributed over the area.

If the mines are eqt;.ally likely to be found in all parts of the area, then
two natural assumptions are that the probability of finding a mine in an
area h is, for small h, proportional to h, while the probability of

finding two or more mines in a small area goes to zero more rapidly than

h. In symbols,

lim il; Prob (one mine in area h) =

b0 - |
|

lim P Prob (two or more mines in area h) =0 , |

o B

where A 1is some positive constant.
As is well-known (see, e.g., Karlin and Taylor ([1975], pp. 22-26)),
these assumptions imply a Poisson distribution of mines. Specifically,

in an area A,

. : -AA m
Prob (m mines in area A) = g—fé-}-&- (m = 0,...) .

This process shall be applied in the following way. At any time

t, the rate of exploratory effort, is the area explored per unit time. Let,
: x(t) = rate of exploratory effort at time t .

Then in the interval, (t, t +.dt), for smll dt, the area explored

is x(t)at. If we let h = x(t)dt, we are assuming,

(1) Prob (discovering one mine between t and t + dt) = Ax(t)at .

————————— st

The probability of discovering two or more mines in this small interval

, | is infinitesimal compared with (1) and can be disregarded.




The learning in this model is simple but not non-existent. It is

true that exploration in any area gives no information about resources
outside that area. However, the unexplored area is diminishing; the
reserves are the sum of those known to be in the explored area plus a ran-

dom variable representing reserves in the unexplored area, })ut the variance

of the latter component is diminishing as the unexplored area diminishes.

Let, .

x(t) = area unexplored at time t.
By definition,
: (2)  X(¢) = x(t) , :

vhere the dot denotes differentiation with respect to time, X(0) is

given and Xt) is restrained to be non-negative; presumably, X(+¢)

approaches zero as t increases.

We make now one central simplifying assumption: all mines have
the same resource quantities. This could be generalized by assuming
that there is a distribution of mine sizes, for example, logarithmic

normal. However, I believe that this generalization can be accommodated

with little change in the following analysis. "~ Without loss of generality,

the amount of resource in each mine will be taken as 1.

Let,

R(t) = kxnown reserves at time t ,

B B o0 S LR

N(t) = number of mines discovered between O end t ,

e¢(t) = rate of consumption of the resource at time t .

1
|
|
l
1
1
|




The total consumption of the resource up to time t is, then,

t
felv)at .
(o] s
The known reserves at time t are the reserves at time O less consump-
tion up to time t plus the number of mines discovered between 0 and ¢t.
t
(3)  R(t) = R(0) - [e(t)at + N(t) .
o
The variable N(t) is a random variable; it jumps up by one unit in any
small interval, (t, t + dt) with a probability given by (1). Therefore

R(t) is also a random variable. From (3),

(&) é(t) = —¢c(t) if t is between jump pointé'of N(t) .

R(t) is constrained to be non-negative everywhere.

2. The Criterion Function

The maximand will be the usual integral of discounted utilities.
Here, utility at any point of time depends on both the amount of the
resource being discussed and on "goods ih general." Since even the most
important mineral requires a relatively small fraction of national income
for production, it is reasonable to assume the asbsence of income effects,
so that utility is linear in gdods-in-general.- It could, therefore, be
ignorgd in analysis except that we will regard exploration as a costly

activity. The inputs to exploration will be assumed to be goodé in general.

Let,

P = price of exploration in terms of goods-in-general .
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U(e) = utility of consumption of resource at any instant .

The units of measurement of U can be taken to be goods-in-general; hence,
the utility generated at any instant is U(c) - Px, when the consumption
is ¢ ‘and the rate of exploration is x.

The payoff to the economy is, ‘

(5)  fePP[u(e(t)) - Px{t)lat

o

where

p = rate of time' discount of utilities .

However, since constraint (3) involves a random variable, the
payoff (5) will be a random variable, since future consumption and
exploration will depend upon the random discoveries made in the intervening

period. The economy will therefore seek to maximize,
T -ot

(6) E{[e P [u(e(t)) - Px(t)lat} .
o .

Criterion (6) is to be maximized with respect to the instruments,
e(t), x(t) subject to the comstraints that X(t) 20, R(t) >0 every-
vhere, with X(t) and R(t) being defined by (2) and (3) respectively.

7’

3. Analysis of the Optimal Policy

The methods are those of dynamic programming; see Bellman and

Dreyfus [1962] for a heuristic exposition.
We consider the maximum value of (6) (under constraints) as a

function of the initial values of the two state variables, R and X.




That is, we let,

(1) VIR, © = max E{ [e-"t[u(c(t)) - Px(t)]at} vhen R(0) = R, X(0) = X.
(o]

Because time enters explicitly only through the exponential dis-
count rate, the optimum starting from to > 0 and discounted back to

t (rather than zero) would be the same function of R(to), X(to) as

given by (7). Hence, V(R,X) is the sum of the integral over the interval

(O,to) and the expected value of V at time to, discounted back to

time O.

' Fo -pt o
(8)  V(R,x) = [fe " [U(e(t)) - Px(t)] +e CEWV(R(t)), x(t))} .
o

Note that R(to) is a random variables, because its value depends on the
number of discoveries in the interval (O,to).

Equation (8) is valid if c(t) and x(t). have been chosen opti-
mally. Alternatively, we may consider c(t) and x(t) to be variables
over the interval (O,to) and optimize over them, on the assumption that
V(R(t;), X(to)) is itself calculated on the assumptio; that an optimal
policy is followed thereafter. Notice that R(to) and X(to) both depend
on the choice of instruments over (O,to), and hence the optimization must
take account of the effects on both terms.

Now assume that to = dt, a number sufficiently small that ¢ and
x may be regarded as constant over (0,dt). We can also disregard the
discounting within this interval. Hence, the first term in (8) can be

approximated by,

[U(e) - Px]dat .




-pdt .
The factor e P is approximately 1 - pdt. From (3), R(dt) is a random

variable. With ¢ treated as constant,

R(dt) z R(0) - cdt + N(dt) ,

where the symbol, "-" means "approximately equal.” But in the small
interval (0, dt), the probability of more than one mine being discovered
is negligible. From (1), N(dat) = 1 with probability approximately

Axdt, and = 0 with probability 1 - Axdt. Also, X(dt) =x (0) - xdt.

Therefore,

(9) E{V(R(4t), x(dt))} = (1 - Axdt)V(r(0) - cdt, x(0) - xdt)

+ )xdtV(R(0) + 1 - ecdt, X(0) - xdt) .

Assume in addition that V is a differentiable function of R

and X. Let vg = 3V/9R evaluated at ®(0), X(0)), V; = 3V/3 X evaluated

at the same point, and V; and 2; the two partial derivatives evaluated

at ®(0) + 1, x(0)). Also, note that R(0) = R, x0) = X.

v(R(0) - eat, X(0) - xat) = V(R,X) - Vpedt - Voxdt

V(R(0) + 1 - cat, X(0) - xdt) = V(R + 1, X) - Vpedt - Vxdt .
Substitution into (9), some rearrangement,and discarding terms in (dt)2 yield,

E{V(R(at), X(dt))} = V(RX) - Vgcdt - v;xdt + AxdtAv(R,X) .

I o PR

(The operator, A, means the difference between the function at R + 1 and

at R, X being held constant.)

If we substitute this and the other results into (8), subtract

(1 - pdt) V(R,X) from both sides, divide through by dt, and let dt approach




zero, we find,

(10) pV(R,X) = max {U(c) - Px - Vpe - V;x + AxAV} . :
C,X

Equation (10) will not hold throughout the (R, X)-plane. Note /
that no upper bound ﬁas been set to the exploration rate and that
exploration costs are linear. Therefore, it is possible and, as will be
seen shortly, true that there will be moments of infinitely rapid
exploration. We may think of a whole area being explored instantaneously,
with a corresponding cost which is finite in total but incurred at an
infinite rate. 1In such a case, there is an instantaneous downward jump
in the state variable X (unexplored land). Equation (10) will not hold

in the region of infinitely rapid exploration.

Now maximize (10) with respect to ¢ and x, the instrument values

at time 0. For the consumption rate, c, ignore the corner possibility c=0; this

is certainly legitimate if U'(0) = +=, i.e., if the resource is

dispensable.

(11) U'(c) = v; g -

The maximand in (10) is linear in x

One cannot exclude the possibility of either a cornmer solution, x = 0, or

of an infinitely rapid exploration; indeed, one of these two cases will

‘ hold almost everywhere. Clearly, from (10), the rate of exploration (x)

would be infinite if,

P+v;<x AV,

and would be zero if,

P+V;>)‘ AV




Clearly, V; and Vg are the shadow rents of the stock of reserves
and the stock of unexplored land, respectively. We can drop the super-

script O, since the analysis holds at any time t. Let,

L}

PR rent of reserves = wﬁ ~

P rent of unexplcced land = Vx .

X

Then (11 ) can be rewritten,

(117) U'(e) =pp >

Let, 3
(12) A = {(R,X)|P+px<AAV | &

13) Ao={(R,X)]P+pX>AAV },

(14) B={(R,X)|P+px=AAV I

Then, from the earlier remarks,
(12') exploration is infinitely rapid for (R, X) € A_,

(13') x =0 for (R, X) ¢ Ao'

When (R. X) € B, it is so far possible that there will be exploration
at a positive but finite rate; in any case, B is the boundary between the
two regions A° and A_.

Equation (11') is familiar; the shadow price of consumption must
equal the shadow price of holding reserves. Relations (12'-13') are more
novel. The left-hand sides in the definitions (12-14) represent the costs
of exploration, direct costs and the use of unexplored land, which has a
value due to its potential for resources. The right-hand sides represent

the benefits, the gain in total utility (a finite increment, not a rate

e gl 2 b L o

b e p e | B il oo stta s ot el o o
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of change) due to finding a mine multiplied by the probability of finding
one per unit effort.

We first investigate the structure of the optimal policy and of
the return function, V, in region Ao. Here, x = 0, ¢ is given by (11'),
and,

pV = U(e) - V_ c,

R
from (10). Differentiate with respect to R and with respect to X; since
c maximizes the right-hand side, it can be regarded as constant in

accordance with the "envelope theorem.'

(15) pVR = -VRRc, oV

Divide the first equation by the second.
vR/vx = Ver/Vrx
This partial differential equation holds throughout the domain Ab' As is

well-known, it is equivalent to the statement that there exist functions

V and RE such that,
(16) V(R, X) = V[R + Rp(X)] for (R, X) € A .

Without loss of generality, we may set

(17) RE(O) = 0.

Note that RE(X) may be regarded as the resource-equivalent value of
unexplored lands.

The importance of this result is that the function V is the return
funetion for the optimal solution in the case where there are nc unexplored
lands, as can be seen by setting X = 0 in (16). This is a standard
problem which is easily solved. Thus, in the case where U(c) = 1ln c, it
is easy to see that,

V(R) = (Inp - 1 + 1n R)/ p.

P L P .
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Then, in the domain Ao, the instrument variables, c and x, are determined

by the relations, x = 0, and, from (11'),

o

U'(e) = Vp = V' [R + Ry (X)].

The movements of the shadow prices in A0 can also be established

easily. Note that,

Ver = V'R + R (D)].

Then,
, T SR M. R el
Ll
PR dt vV dt VR RR ?

since there is no exploration, R = - ¢, by (4). Then by the first equation

in (15),

(18) pR/pR = p for (R, X) ¢ Ao.
as in the usual Hotelling theory. From (16),

19) Py ™ Vg = V' RL(R);

e tia oigd e o b ten o h

hence the ratio px/pR depends only on X and is therefore constant along any

given path. Hence, we must also have,

(20) px/pX = p for (R, X) € Ao.

This regime continues, with R decreasing, until the trajectory hits
B. Note that the behavior has been defined up to an as yet unknown
function, RE'

Now let us consider the determination of the return function,
V(R, X), in A,. Suppose the initial situation is (R, X + dX). Exploration
occurs at an infinite rate, so consumption can be disregarded. When
the area dX is explored, the probability of a discovery is AdX to a first

approximation. If a discovery is made, the point, (R, X + dX) is trans-

formed into (R+1l, X); if not, it is transformed into (R, X). The cost




incurred is P dX. Hence,

VR, X +dX) ~ (A dX) V(R+1, X) + (1 - X dX) V(R, X) - P dX.
Dividing through by dX and letting dX approach 0 yields,

(21) VX(R, X) = X AV (R, X)-P for (R, X) € A_.

Let the boundary B be represented by the curve, R = RB(X)’ so that,

(22) R >'RB(X) for (R, X) ¢ Ao, R < RB(X) for (R, X) € A_.

We wish to determine RB(X). Since the point (RB(X), X) is on the
boundary of both Ao and A , it follows by continuity that Vx is given both

by (19) and (21).

(23) V' [Ry(X) + Ry(X)] RE(X) = A4V [Ry(X), X] - P.

For a path starting from some (R, X), R > RB(X), V(R, X) = VIR + RE(X)]
is maximized when RE(X) is maximized. If RE is given up to and including
X, it follows that we wish to maximize Ré(x), since this act maximizes

RE(X + dX). From (23), then,

(24) Rp(X) = max [AAV (r, x) - P1/V'[r + Ry(X)],
r
(25) RB(X) is the value of r which achieves the maximum in (24).

These equations, together with (21) and (16) completely describe the
solution. Start with V(R, 0) = V(R), a known function. Having defined
the functions, V(R, X), RE(X) up to some point X for all R, we
can calculate RB(X) and Ri(X) from (24) and (25). We can then
define V(R, X + dX) from (21) for R < RB (X), RE(X + dX) = RE(X) + Ré(x) dx,
and therefore V(R, X+dX) = V[R + RE(X+dX)].

One last important point. It can be shown that RB is a decreasing

function. Suppose, to the contrary, that it were increasing in some

interval. Start with a point (R, X+dX) ¢ B, so that R = RB(X + dX). 1If

exploration over dX produces no discovery, then we arrive at the point




(R, X); but R = RB(x + dX) > RB(X)’ so that (R, X) € Ao. If a discovery

is made, then we arrive at (R+l, X), which certainly belongs to Ao. In
that case,

AV(R, X) = VIR + 1 + Ry(X)] - VIR + R (X)].

In the maximization in (24), RE(X) is taken as given. Hence,
maximizing over r is equivalent to maximizing over s = r + RB(X)' There~
fore, (24) becomes,

RE(X) = max [\ AV(s) - P] /V'(s).
s

and,

RB(x) = g% - RE(X)’ where s* achieves the maximization above.

But the maximand is now independent of X, so that s* is independent of X.
Since RE(X) is certainly increasing (an increase in unexplored lands can
certainly never decrease total return), RB(X) must be decreasing, a contra-
diction to the original assumption that RB is increasing.

That RB is decreasing is a bit surprising at first. However, suppose
there is an infinite amount of unexplored territory, the case studied by
Deshmukh and Pliska [1978]. Under our special assumptions (linear costs of
exploration), it is easy to see that the optimal path starting with some
reserves R is to exhaust them along an optimal path (with prices rising
at the rate p). When R = 0, then exploration takes place at an infinite
rate until a discovery is made. There is no reason to explore earlier;
there is no information gained, since a discovery will always be made with
probability 1, and, in view of discounting, it pays to postpone exploration
until the last possible moment. When the discovery is made, exploration

ceases, and consumption again proceeds until the new reserves are exhausted.

—— e
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In this case, the price rises at the rate p until exhaustion but

drops abruptly upon discovery. Over a long period of time, price has
no trend, though it varies periodically.
We may assume that in our model, with large X, the effect is

approximately the same as infinite X. Clearly, with U'(0) = 4=, one would

not proceed to absolute exhaustion; with a finite X, there is always a
; finite probability that there are no discoveries to be made. But with ?
large X, the probability of that event, e-xx, is very small, so that
RB(X) would be expected to be very small. On the contrary, with small X,
information about the remaining reserves becomes more important, so that
exploration takes place at a higher level of reserves.

The price history will show fluctuations with little upward trend
when X is large; presumably the upward trend is stronger as X approaches
zero, but this requires a probabilistic analysis not yet performed.

4. Commentary.

The alternation of zero and infinite rates of exploration is an
unfelicitious feature of the model. It is due to the assumption that : |
exploration costs are flows and can be turned on and off without cost.
If one added to the model the need for capital invested i; exploration

and production, there would be a tendency to smooth out exploration activities

in order to make better use of the capital. But this would convert the

problem into one with three state variables, which would be even more

difficult.
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unit time), x. Reserves, R, are drawn down by consumption and increased by
discoveries made during exploration; X is decreased by exploration. At any moment,
the payoff to society is a concave function of c¢ less a linear function of x.
Payoffs in the future are discounted back to the present at a constant rate.ﬁ;

The optimal policy is characterized by a decreasing function, RB(X). When
R > (X), there is no exploration. The shadow prices of reserves and of unexplored
land "both rise at the rate of interest, and consumption is such that its marginal
utility equals the shadow price of reserves. When R decreases to RB(X)’ exploration
occurs at an infinite rate; R is increased by random discoveries and X is
decreased by the area explored, so that R and X are transformed into R' and X',
respectively, with R' > R (X'). For large values of X, (X) is almost zero,
and the shadow prices move in random cycles but show only a slight upward trend,
thereby casting some light on the failure of mineral prices to rise at the market
rate of interest.
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